The Transcription Factor Ste12 Mediates the Regulatory Role of the Tmk1 MAP Kinase in Mycoparasitism and Vegetative Hyphal Fusion in the Filamentous Fungus Trichoderma atroviride

نویسندگان

  • Sabine Gruber
  • Susanne Zeilinger
چکیده

Mycoparasitic species of the fungal genus Trichoderma are potent antagonists able to combat plant pathogenic fungi by direct parasitism. An essential step in this mycoparasitic fungus-fungus interaction is the detection of the fungal host followed by activation of molecular weapons in the mycoparasite by host-derived signals. The Trichoderma atroviride MAP kinase Tmk1, a homolog of yeast Fus3/Kss1, plays an essential role in regulating the mycoparasitic host attack, aerial hyphae formation and conidiation. However, the transcription factors acting downstream of Tmk1 are hitherto unknown. Here we analyzed the functions of the T. atroviride Ste12 transcription factor whose orthologue in yeast is targeted by the Fus3 and Kss1 MAP kinases. Deletion of the ste12 gene in T. atroviride not only resulted in reduced mycoparasitic overgrowth and lysis of host fungi but also led to loss of hyphal avoidance in the colony periphery and a severe reduction in conidial anastomosis tube formation and vegetative hyphal fusion events. The transcription of several orthologues of Neurospora crassa hyphal fusion genes was reduced upon ste12 deletion; however, the Δste12 mutant showed enhanced expression of mycoparasitism-relevant chitinolytic and proteolytic enzymes and of the cell wall integrity MAP kinase Tmk2. Based on the comparative analyses of Δste12 and Δtmk1 mutants, an essential role of the Ste12 transcriptional regulator in mediating outcomes of the Tmk1 MAPK pathway such as regulation of the mycoparasitic activity, hyphal fusion and carbon source-dependent vegetative growth is suggested. Aerial hyphae formation and conidiation, in contrast, were found to be independent of Ste12.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early colony establishment in Neurospora crassa requires a MAP kinase regulatory network.

Vegetative fusion is essential for the development of an interconnected colony in many filamentous fungi. In the ascomycete fungus Neurospora crassa, vegetative fusion occurs between germinated conidia (germlings) via specialized structures termed "conidial anastomosis tubes" (CATs) and between hyphae within a mature colony. In N. crassa, both CAT and hyphal fusion are under the regulation of a...

متن کامل

Signal Transduction by Tga3, a Novel G Protein Subunit of Trichoderma atroviride

Trichoderma species are used commercially as biocontrol agents against a number of phytopathogenic fungi due to their mycoparasitic characterisitics. The mycoparasitic response is induced when Trichoderma specifically recognizes the presence of the host fungus and transduces the host-derived signals to their respective regulatory targets. We made deletion mutants of the tga3 gene of Trichoderma...

متن کامل

The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea.

In all fungi studied so far, mitogen-activated protein (MAP) kinase cascades serve as central signalling complexes that are involved in various aspects of growth, stress response and infection. In this work, putative components of the yeast Fus3/Kss1-type MAP kinase cascade and the putative downstream transcription factor Ste12 were analysed in the grey mould fungus Botrytis cinerea. Deletion m...

متن کامل

Identification of translational regulation target genes during filamentous growth in Saccharomyces cerevisiae: regulatory role of Caf20 and Dhh1.

The dimorphic transition of yeast to the hyphal form is regulated by the mitogen-activated protein kinase and cyclic AMP-dependent protein kinase A pathways in Saccharomyces cerevisiae. Signaling pathway-responsive transcription factors such as Ste12, Tec1, and Flo8 are known to mediate filamentation-specific transcription. We were interested in investigating the translational regulation of spe...

متن کامل

Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride

The response to mechanical damage is crucial for the survival of multicellular organisms, enabling their adaptation to hostile environments. Trichoderma atroviride, a filamentous fungus of great importance in the biological control of plant diseases, responds to mechanical damage by activating regenerative processes and asexual reproduction (conidiation). During this response, reactive oxygen s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014